

Riccardo Rando
INFN Padova /
University of Padova

Radiation Validation of GLAST LAT Parts

LAT Radiation Environment

- Solar Particle Events
- Galactic Cosmic Rays
- Maximum LET
- Most interesting processes have threshold and saturation value
- Investigate performances within these two limits

Radiation Effects: SEE (SEU+SEL)

- Expected rates are low, importance of SEE
- SEU: data corruption
- Data stored in register cells are altered by induced charge
- SEU hardened registers
- SEL: potentially destructive
- · Inherent p-n-p-n in CMOS
- Can be activated by injected charge: shortcircuit
- Safety measures, but prevention is better

Radiation Effects: TID

- Changes in (analogic) performances
- Damage near Si-Ox interface
- Expected dose:

little less than 1 krad

- Monitor parameters:
 - √ Noise, gain
 - √ Threshold, ref voltages
 - ✓ Power consumption
- Does the chip survive?

Radiation Testing – INFN Pd

- Laboratory in Padova, testing proper at Laboratori Nazionali di Legnaro
- Collaboration started last year with LAT TKR ASICS
- Extended to include LAT DAQ,
 LVDS TC, DC-DC Converters...
- Many, many people involved (INFN, Padova University, SCIPP, SLAC, GSFC)

Parts Tested

- Detailed radiation validation for LAT TKR ASICs (almost completed)
- Detailed radiation validation for LAT DAQ (50%)
- SEL validation of commercial parts (DC-DC) to be used on LAT

∢GTFE

GTCC >

Let's now examine a specific case: TKR

≺DC-DC

LAT TKR ASICs

- Test Multi-Chip-Modules
- · 7 front-end (GTFE), 64 chn's
- · 2 controller (GTRC)
- 20 MHz operation
- Test SEE / TID
- To be tested:
 ✓ 2+2 (SEE)

- · SEE tests: done at LNL (Padova)
- TID tests: 4 GTRC still to do!

TKR ASICs SEE at Legnaro (1)

- 15 MV Van de Graaf accelerator
- SIRAD beam line, for SEE/TID testing
- LET from 8 (Si) to 55 (Ag) MeV cm² / mg
- Func. Tests before irradiation
- Irradiation and test
- Look for threshold, saturation
- Calculate expected SEU in LAT TKR
- Calculate upper limit for latch-ups

	Ť				
Ion species	Energy (MeV)	LET (MeV·cm²/mg)	Range (um)	Total fluence (ions/cm²)	Dose (krad)
$^{28}\mathrm{Si}$	161.06	8.5	62	2.0×10 ⁷	2.5
⁵⁸ Ni	236.13	28.4	34	5.0×10 ⁶	2.5
$^{79}{ m Br}$	246.84	38.8	31	4.0×10 ⁶	2.5
107Ag	271.88	54.7	28	3.0×10 ⁶	2.5

TKR ASICs SEE measurements

- Write bit patterns in registers, read back and check for errors
- Observed ✓ Upsets
 - ✓ Communication Errors
 - ✓ Functionality Interrupts
- Cross sections calculated
- Power supplied by a custom-made
 SEL monitor power supply to prevent
 ASIC burnout and record latch-ups
- No latch-ups, upper limits found

TKR ASICs SEE at Legnaro (2)

- Expected upsets are few
- No latch-up : less than 3 (C.L. 95 %)
- Safest UL: maximum LET (Ag), delivered
 3·10⁶/cm² to both GTFE
- 5 years fluence, # of GTFE in tracker
 (13,824 GTFE & 1,152 GTRC)
- In the whole tracker, in 5 years upper limits and expected rates are:

Interlude: SEE at TAMU (1)

- Range at LNL limited at 60 _m
- Rumors that a greater range could show SELs
- TAMU: Cyclotron run at 15 MeV/amu:
 - √ Kr LET=27.8 (LNL:Ni), r=134 _ m
 - √ Xe LET=51.5 (LNL:Ag), r=120 _ m
- MCM04: SEUs (low flux for comparison)
- MCM04/03: SELs (high fluxes, high fluences)
- No latch-ups!
- Upper limit drops: ~2·10⁻⁴ in 5 years

Interlude: SEE at TAMU (2)

- Use low-flux runs to calculate SEU cross-sections
- Range should not matter at all
- Do they agree with what found at Legnaro?
- Yes!

Plots: data from LNL runs

→ = TAMU results

TKR ASICs TID at Legnaro

- 60Co gamma source (CNR-FRAE Padova)
- · Delivered dose: 10 krad, in 4 steps
- ASICs tested after each step
- No increase in power consumption
- All ASIC functionalities OK after irradiation
- Gain OK, noise within limits
- Many ASICs tested, "by the book" (i.e. MIL-STD-883) for validation purposes, but also with ions and both ions and gamma
- Survival verified up to 40 krad!

Conclusions

- · Validation process proceeds at full speed
- More and more parts are undergoing tests
- No problem foreseen for LAT ASICs due to radiation environment

For all data, plots, results, look for us on the web:

and click here

http://sirad.pd.infn.it/glast